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Abstract. The paper presents a simplified theoretical analysis of the hydrodynamics of a two-
dimensional hexatic phase, based on the more detailed theory of Zippeliuset al (Zippelius A,
Halperin B I and Nelson D R 1980Phys. Rev.B 22 2514). The crossover, with increasing
frequency, of the hydrodynamic modes from those typical of a hexatic phase to those typical
of a solid is studied in a free-dislocation model, and it is discussed whether in practice this
crossover is likely to be strongly affected by the presence of dislocation pairs. The theory is
applied to a two-dimensional sheet of ions trapped below the free surface of superfluid helium,
and the effect of both a magnetic field and a finite ionic mobility is examined. The extent to
which this system offers the possibility of experimental verification of the theory is discussed.

1. Introduction

There has been much interest for many years in the process of melting in two-dimensional
systems (see, e.g., Strandburg 1988), and in the possibility that this melting process might
lead to the production of a new type of phase, intermediate between a crystal and a fluid.
More specifically, it has been suggested that melting in two dimensions may take place
through two transitions, at temperaturesTm and Ti . Below the temperatureTm there
would be a crystal with quasi-long-range translational order and long-range order in the
orientation of the bonds between neighbouring atoms. BetweenTm andTi there would be
the intermediate, orhexatic, phase, with no long-range translational order, but with quasi-
long-range orientational order. AboveTi there would be no long-range order at all. Melting
at Tm would take place through a Kosterlitz–Thouless transition at which bound pairs of
dislocations become unbound; the transition atTi would be a second Kosterlitz–Thouless
transition at which free dislocations, which can be regarded as bound pairs of disclinations,
dissociate into free disclinations.

This paper is ultimately concerned with a particular type of two-dimensional system:
one in which the particles are charged and where the particle interactions are due simply
to Coulomb repulsion. Examples of such a system are provided by electrons trapped above
the free surface of liquid helium (Grimes and Adams 1976), by ions trapped below the
free surface of superfluid helium (Barenghiet al 1991), and by two-dimensional colloidal
suspensions of charged polystyrene spheres (Murray and van Winkle 1987). The formation
and melting of a crystal phase has been observed in all three types of system (Grimes and
Adams 1979, Vinenet al 1994, Murray and van Winkle 1987). There is good evidence from
direct visual observations that a hexatic phase exists in the colloidal suspensions (Murray and
van Winkle 1987), but evidence for a hexatic phase in the other systems has still to be found.
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The hexatic phase has been observed and studied in other types of two-dimensional system:
for example, in the flux lines present in thin films of high-temperature superconductors in
an applied magnetic field (Grieret al 1991, Theunissenet al 1996).

The hexatic phase ought to exhibit special hydrodynamic properties, the observation
of which would be interesting and important in itself and might provide evidence for the
existence of the phase in systems where direct visual observation is not possible. The general
form of the hydrodynamic equations for a hexatic phase were discussed by Zippeliuset al
(1980); they discussed not only general phenomenology but also a model in which the
hexatic phase is represented as a crystal containing free dislocations (see also Stoofet al
1996). Satisfactory observation of the hydrodynamics of the colloidal suspensions is hardly
possible owing to the damping imposed by the background medium, and the interpretation
of experiments on the electron system above the surface of liquid helium is complicated
by strong ripplon interactions. It has been shown recently that the ion system beneath the
surface of superfluid helium suffers less seriously from these problems: at low temperatures
the ions have a very high mobility, the superfluid imposing only a very small drag force,
and ripplon interactions are much less severe in their effects. Preliminary experiments have
already been reported in which shear mode propagation has been observed at temperatures
just aboveTm, and further experimental work is now in progress. This paper is intended to
provide a theoretical background for these experiments. We shall review the results obtained
by Zippeliuset al and discuss how they apply to the ion system. In one sense the review is
a simplified version of the work of Zippeliuset al, although we hope that it retains enough
of the essential physics, while being more accessible to the general reader. On the other
hand we shall discuss some issues, notably those in sections 4.3, 4.4, and 4.6, either in more
detail and or in a way that will prove more useful in a later paper where we shall compare
the theory with the results of the ion experiment. Sections 5 and 6 contain new material.

The hexatic order parameter is introduced in section 2, and the way in which hexatic
ordering affects the phenomenology of the hydrodynamic equations is described in section 3.
The free-dislocation model is then used to obtain more detailed information about the form
of the hydrodynamics and about the values of the kinetic coefficients (section 4). The effects
of a vertical magnetic field and a finite particle mobility are described in some detail in
section 5. The possibility of performing relevant experiments on the ion system is discussed
in section 6.

2. The hexatic order parameter

The ordering in the hexatic phase is characterized by an order parameter9(r), which is
defined as follows. We deal with a triangular lattice, such as is present in the crystal phase of
the ion system, so each particle has six nearest neighbours in the crystal phase. Consider a
particle (ion) at the pointr. Let θ(r) be the angle of orientation, relative to some fixed axis,
of the bond joining this particle to one of its neighbours. Now define the bond-orientation
order parameter at the positionr as

9(r) = |9| exp[6i2(r)] = 〈exp[6iθ(r)]〉 (2.1)

where〈· · ·〉 represents an average over the different bonds and over thermal fluctuations. The
angle2(r) defined by (2.1) is then a measure of the average local orientation of the bonds,
while |9| is a measure of the extent of hexatic ordering. As is the case with other order
parameters,|9| will decrease with increasing temperature, vanishing at the temperatureTi .

The hexatic has its minimum free energy when2(r) is spatially uniform. Any gradients
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in 2(r) will lead to an increase in free energy, given by

FH = 1

2
KA(T )

∫
|∇2|2 d2r (2.2)

where the integration is over the whole area of the hexatic. The parameterKA(T ) decreases
with increasing temperature, as the hexatic becomes less ordered.

3. Phenomenological hydrodynamic equations and wave propagation

A straightforward generalization of the equations written down by Zippeliuset al (1980)
leads to the following equations describing the linearized dynamical behaviour of a hexatic
composed of charged particles such as ions:

∂ρ

∂t
+ ρ0 divv = 0 (3.1)

∂v

∂t
+ 1

τ
v = − c

2
`

ρ0
∇ρ + ωcv × ẑ + η

ρ0
∇2v + ζ

ρ0
grad divv + KA

2ρ0
curl(ẑ∇22) (3.2)

∂2

∂t
= 1

2
ẑ · curlv + κ ∇22. (3.3)

ρ is the areal mass density of the hexatic,ρ0 is the equilibrium density,v is the velocity
field, c` is the speed of sound in the fluid phase,ẑ is the unit vector normal to the plane
of the hexatic,η and ζ are coefficients of first and second viscosity, andκ is a diffusion
coefficient. We have included the effect of a magnetic field,Bz, pointing normal to the
plane of the hexatic, because many of the relevant experiments on the ion system are
carried out in the presence of such a field;ωc is the cyclotron frequency,eBz/m, e andm∗

being the charge and mass of each particle. We have assumed for simplicity that there is a
local relationship between fluctuations in the density of the system and the corresponding
fluctuations in pressure or electrostatic potential that give rise to the driving force appearing
as the first term on the right-hand side of equation (3.2). (For the ion system this means that
equation (3.2) is strictly true only in the limit in which the wavenumber of the disturbance
is small compared with the reciprocal of the spacing between the electrodes that provide the
holding field for the ions; see, e.g., Barenghiet al (1991).) It is assumed that the particles
of the system have a finite mobility; i.e. that the motion of an ion is subject to a frictional
drag against a fixed background, given by the term(1/τ)v in equation (3.2). In practice
for trapped ions below the surface of superfluid helium this drag is due at the relevant
low temperatures to ripplon scattering. Further discussion of equations (3.2) and (3.3), at a
phenomenological level, is given in appendix A.

We shall be particularly interested in modes of wave propagation in the hexatic, with
space and time dependence exp(iqx − iωt). In the special case whereτ = ∞, ωc = 0 there
are pure longitudinal and pure transverse modes, with the dispersion relations (Zippelius
et al 1980)

ω` = c`q − i

2

(
η + ζ
ρ0

)
q2 (3.4)

and

ωt = − iq2

2

 η
ρ0
+ κ ±

{(
η

ρ0
− κ

)2

− KA
ρ0

}1/2
 . (3.5)
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We note that there are two transverse modes, which we shall discuss later. We shall
find later that these equations, and the hydrodynamic equations on which they are based,
are valid only at sufficiently low frequencies.

In the next section, where we describe the free-dislocation model, we shall retain the
assumptions thatτ = ∞, ωc = 0. The effect of relaxing these conditions is described in
section 5.

4. The free-dislocation model

Following Zippeliuset al (1980) we model the hexatic as a crystal containing a density
nf of free, non-interacting, mobile dislocations which form at the Kosterlitz–Thouless
melting transitionTm. For the moment we ignore the presence of any residual bound
pairs of dislocations. Let the particle displacement fielduk describe the displacements of
the particles from the sites of the perfect crystal. As mentioned in appendix A, the presence
of dislocations leads to a situation where the displacement fielduk no longer corresponds
to a displacement of the local centre of mass and, as explained in detail by Zippeliuset al,
is no longer a single-valued function of position. However, single-valued and continuous
time and space derivatives can still be defined, except at the core of each dislocation. Let
Bj be thej -component of the total Burgers vector associated with the dislocations in unit
area, and letJ ij be the correspondingith component of the Burgers current arising from the
flow of dislocations; the two are connected by the continuity equation

∂Bi

∂t
+ ∂J

i
j

∂xj
= 0. (4.1)

Letwik = ∂uk/∂xi , the local microscopic strain field being then equal to(wik + wki)/2.
If the particle displacements are due entirely to the presence of dislocations, then (Zippelius
et al 1980)

εki
∂wij

∂xk
= Bj . (4.2)

In addition, the time derivative ofwij is given by

∂wij

∂t
− εikJ jk =

∂vj

∂xi
(4.3)

wherevj is a component of the velocity of the local centre of mass of the system (equivalent
to the velocityv that appears in the hydrodynamic equations).

For a two-dimensional isotropic solid the stress tensor is given in terms of the strain
uij = 1

2(wij + wji) by

σij = (λ+ µ)u``δij + 2µ

(
uij − 1

2
u``δij

)
(4.4)

whereλ andµ are the Laḿe coefficients;µ is the shear modulus, andK = λ + µ is the
bulk modulus.

The local mass current is governed by the usual equation of motion

ρ0
∂vi

∂t
= ∂σij

∂xj
. (4.5)
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4.1. Shear modes

Let us first confine our attention to shear motion, for which we need consider only the
off-diagonal components of the stress and strain tensors. It then follows from (4.3) and
(4.4) that

1

µ

∂σij

∂t
= ∂vj

∂x
i

+ ∂vi
∂xj
+ εikJ jk + εjkJ ik . (4.6)

In the presence of a shear stress a dislocation with Burgers vectorbj will experience a
Peach–Koehler force equal to−εkiσjkbj (Nabarro 1967). Furthermore, dislocations can
diffuse, with diffusion coefficientD. It follows, subject to certain assumptions that we
explain in section 4.4, that the Burgers current will be given by

J
j

i = −αεkiσjk −D
∂Bj

∂xi
(4.7)

whereα is a dislocation mobility. Equations (4.1), (4.4), (4.5) and (4.7) form a closed
system of equations for determiningJ ik , σij , vi and the perturbation inBj .

4.2. Shear modes at low frequencies: comparison with phenomenological hydrodynamics

We now show that for the case of shear motion this system of equations is equivalent to
the hydrodynamic equations (3.3), (3.4) and (3.5) provided that frequencies are sufficiently
small. We note first that perturbations in the hexatic angle are given by

δ2 = 1

2
εikwik. (4.8)

For the sake of simplicity let us suppose that the perturbations depend only onx1 = x.
Using equation (4.3) we then find that

∂2

∂t
= 1

2

(
∂vy

∂x
+ J xx + J yy

)
(4.9)

while equations (4.5), (4.6) and (4.7) become

1

µ

∂σxy

∂t
= ∂vy

∂x
+ J yy − J xx (4.10)

J xx = ασxy −D
∂Bx

∂x
J yy = −ασxy (4.11)

ρ0
∂vy

∂t
= ∂σxy

∂x
. (4.12)

Using (4.11) to eliminate the Burgers currents, we find from equations (4.1), (4.9) and
(4.10)

∂Bx

∂t
= −α ∂σxy

∂x
+D∂

2Bx

∂x2
(4.13)

∂2

∂t
= 1

2

(
∂vy

∂x
−D∂Bx

∂x

)
(4.14)

and

1

µ

∂σxy

∂t
= ∂vy

∂x
− 2ασxy +D∂Bx

∂x
. (4.15)
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We shall be particularly interested in modes of oscillation of the hexatic phase, and we shall
suppose that the frequency is sufficiently low that the left-hand side of equation (4.15) is
negligibly small. Then the stress tensor is given by

σxy = 1

2α

(
∂vy

∂x
+D∂Bx

∂x

)
. (4.16)

From (4.16) and (4.13) we find

∂2vy

∂x2
= −2

∂Bx

∂t
+D∂

2Bx

∂x2
. (4.17)

It follows from (4.14) and ((4.17) that

∂22

∂x ∂t
= −∂Bx

∂t
(4.18a)

that is

Bx = −∂2
∂x

(4.18b)

so in the low-frequency limit the gradient in the hexatic angle is simply related to the net
density of dislocations.

With the help of equations (4.18) we can write equations (4.14) and (4.16) as

∂2

∂t
= 1

2

(
∂vy

∂x
+D∂

22

∂x2

)
(4.19)

σxy = 1

2α

(
∂vy

∂x
−D∂

22

∂x2

)
. (4.20)

We see that equations (4.19) and (4.20) are consistent with the hydrodynamic equations
(3.2) and (3.3), if we take

KA = D

α
η = 1

2α
κ = D

2
. (4.21)

We emphasize that this consistency holds only at sufficiently low frequencies.

4.3. Shear modes at high frequencies: viscoelastic behaviour

In the limit of high frequencies the left-hand side of equation (4.15) must become more
important than either of the second two terms on the right-hand side, and the hexatic behaves
like a solid. The hexatic therefore exhibits viscoelastic behaviour.

In order to demonstrate the crossover between low-frequency and high-frequency
behaviour, we consider the propagation of a plane transverse wave withx- andt-dependence
as exp(iqx − iωt). Equations (4.12), (4.13) and (4.15) become

−iωρ0vy = iqσxy (4.22)

−iωBx +Dq2Bx = −iqασxy (4.23)

− iω

µ
σxy = iqvy − 2ασxy + iqDBx. (4.24)

Eliminating vy , Bx andσxy we obtain the dispersion relation

ω2

c2
t

− q2+ iω

ν

iω − 1
2Dq

2

iω −Dq2
= 0 (4.25)
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Figure 1. Characteristic frequencies plotted against reduced temperaturet = T/Tm; q =
103 m−1. Full curve:ωs ; long-dashed curve: 1/τ ; short-dashed curve:ω1; chain curve:ω2.

wherect = (µ/ρ0)
1/2 is the speed of transverse sound in a solid with shear modulusµ,

and ν = η/ρ0 is the kinematic viscosity of a fluid with viscosityη. In practice (see
figure 1)Dq2 is likely to be much smaller thanω. We see then that crossover between
viscous (ω = −iνq2) and elastic (ω = ctq) behaviour takes place whenq ≈ qs = ct/ν

or ω ≈ ωs = c2
t /ν. In the low-frequency limitω � ωs , equation (4.25) reduces to

(3.5), provided that we use the relationships (4.21). We emphasize that the hydrodynamic
equations of section 3 hold only in the low-frequency limit.

4.4. Longitudinal modes

A discussion of longitudinal modes is straightforward except insofar as care is required in
writing down the analogue of equation (4.7), which describes the motion of dislocations
induced by diffusion and by a strain in the lattice.

We first remark that equation (4.7) is itself an oversimplification because it incorporates
the assumption that dislocations have associated with them a single mobility and a single
diffusion coefficient. In reality, we ought to distinguish between the motion of a dislocation
in a direction parallel to the Burgers vector (glide) from that in a direction perpendicular
to the Burgers vector (climb). In the latter case motion can take place only if vacancies or
interstitials are absorbed or emitted. These emission or absorption processes must impede
the motion of the dislocation, so the corresponding mobility must be reduced. We ignored
this fact in (4.7), making the assumption that there is only a single mobility.

In the case of shear modes the dislocations are driven by off-diagonal components of
the shear stress, and we have only the Peach–Koehler force. In the case of longitudinal
modes we must recognize that a dislocation can be driven in a direction perpendicular to
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its Burgers vector by a gradient in the density of point defects. Here we shall not consider
the general case, but instead we shall assume that the point defects are always close to
thermal equilibrium. As shown by Zippeliuset al, the induced Burgers currents can then be
expressed in terms of effective Peach–Koehler forces involving the diagonal components of
the stress tensor, together of course with the effect of diffusion. Equations (4.26) and (4.27)
are the result, where we have again assumed that there are single values of the mobility and
diffusion coefficients.

We shall take the longitudinal mode to involve dependences onx and t as given by
exp(iqx − iωt). In accord with the argument that we have just mentioned, the Burgers
currents are then given by

J xy =
α

2
(σyy − σxx) (4.26)

and

J yx =
α

2
(σyy − σxx)− iqDBy. (4.27)

In addition we have from equations (4.5), (4.1), (4.3) and (4.4)

−iωρ0vx = iqσxx (4.28)

−iωBy = −iqJ yx (4.29)

−iωσxx = (2µ+ λ)(iqvx + J xy )− λJ yx (4.30)

−iωσyy = λ(iqvx + J xy )− (2µ+ λ)J yx . (4.31)

Elimination of vx, By, J
y
x and J xy leads to equations forσxx and σyy , from which we

obtain the following dispersion relation∣∣∣∣∣∣∣∣
−ω2+ 2µ + λ

ρ0
q2− iωα

2

(
2µ− λDq2

iω −Dq2

)
iωα

2

(
2µ− λDq2

iω −Dq2

)
λq2

ρ0
+ iωα

2

{
2µ+ (2µ+ λ) Dq2

iω −Dq2

}
−ω2− iωα

2

{
2µ+ (2µ+ λ) Dq2

iω −Dq2

}
∣∣∣∣∣∣∣∣

= 0. (4.32)

We expand to first order inD (assuming always thatDq2/ω � 1). We distinguish two
cases: low frequencies (ω � ωs = c2

t /v = 2αµ); and high frequencies (ω � ωs). In the
low-frequency case we expand also to first order inω/αµ; in the high-frequency case we
expand to first order inαµ/ω. We find the following results.

For low frequencies:

ω2− c2
`q

2+ iωq2

(
1

2αρ0
+ D

2

)
= 0 (4.33)

where

c2
` =

λ+ µ
ρ0

. (4.34)

For high frequencies:

ω2− c̃2
`q

2+ i

(
2µ

2µ+ λ
)
αµω = 0 (4.35)

where

c̃2
` =

λ+ 2µ

ρ0
. (4.36)
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The low-frequency limit corresponds to a motion in whichσxx ≈ σyy , which means that
the hexatic is being compressed uniformly, as in sound propagation in a liquid. In the
high-frequency limitσyy = σxxλ/(λ+ 2µ), so, as in longitudinal sound propagation in a
solid, compression is no longer uniform.

Comparing (4.33) with (3.4), and remembering (4.21), we see that the coefficient of
second viscosity in the free-dislocation model must be given by

ζ = ρ0D

2
. (4.37)

4.5. Values of the hydrodynamic coefficients

Let nf be the number of free dislocations per unit area. Suppose that the movement of each
dislocation by an interparticle spacinga0 involves the surmounting of an energy barrierW
with an attack frequencyω0. A simple calculation then yields a diffusion coefficientD at
temperatureT given by

D = 2a2
0ω0 exp

(
− W

kBT

)
. (4.38)

The mobilityα can then be obtained from the Einstein relation, which in this case takes the
form

D = αkBT

nf a
2
0

. (4.39)

Hence we have

α = 2a4
0nf ω0

kBT
exp

(
− W

kBT

)
. (4.40)

Then, using equations (4.21), we find

KA = kBT

nf a
2
0

(4.41)

η = kBT

4a4
0nf ω0

exp

(
W

kBT

)
(4.42)

κ = ζ

ρ0
= a2

0ω0 exp

(
− W

kBT

)
. (4.43)

4.6. The effect of bound pairs of dislocations

So far we have ignored the fact that, especially near the melting temperatureTm, there
is present a significant density of bound pairs of dislocations. The effect of these bound
pairs was discussed briefly by Zippeliuset al (1980) and has been discussed in more detail
by Dahmet al (1989). Here we confine ourselves to a brief introductory discussion and
to some analysis of the effect of the bound pairs on our earlier results. Our discussion is
deliberately qualitative and elementary, to emphasize the essential physics; a more thorough
discussion would require an approach similar to that of Ambegaokaret al (1980) developed
in the context of the Kosterlitz–Thouless transition in superfluid films.

When the crystalline or hexatic phase is subjected to a shear stress the members of each
dislocation pair will experience the corresponding Peach–Koehler force. As a result they
will move until this force is balanced by the modified force of interaction between the two
dislocations. The net effect is a reorientation of the dislocation pair. In the crystalline phase
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and for a time-independent applied stress, the effective shear modulus is thereby reduced.
For a time-dependent stress the fact that the reorientation of each dislocation takes place
at a finite rate, characterized by a finite relaxation timeτP , leads to dissipation. In the
hexatic phase analogous effects take place and add to the effect of the free dislocations;
in particular, there will be added dissipation in a shear mode, which will be observed as
a frequency-dependent addition to the viscosity, and a modification to the effective shear
modulus that enters into the crossover frequencyωs .

In order to judge the importance of these effects in the context of our earlier discussion
we need first to estimate the relaxation timeτP . The reorientation of a dislocation pair
in the external stress field will take place as a result of diffusion, which is characterized
by the diffusion coefficientD. It follows that for a dislocation pair with separationd the
relaxation time,τP (d), must be of orderd2/D. Following the work of Ambegaokaret al
(1980) on the analogous problem relating to vortex pairs in a superfluid film, Dahmet al
(1989) suggest that

τP (d) = d2

14D
. (4.44)

In practice dislocation pairs will be present with a range of separations, and we shall denote
by dmax (a function of temperature) the maximum separation for which there is a significant
concentration of these pairs. For the moment we shall assume that the behaviour of the
dislocation pairs is dominated by those with the largest separation, and that there is therefore
a single dominant relaxation timeτP (dmax).

To proceed further let us imagine that we have removed all of the free dislocations
from the hexatic phase, leaving the bound dislocation pairs unchanged. We introduce two
values of the shear modulus of the system as it then exists: the valueµ0 that applies in
the limit of zero frequency; and the valueµ∞ that applies in the limit of frequencies much
larger than 1/τP (dmax). The value ofµ∞ is not affected by the bound dislocation pairs: the
pairs cannot follow the fast variation of the applied stress and therefore do not contribute
to the linear response. In contrast, in the zero-frequency limit the bound pairs adiabatically
follow the applied stress, which leads to a reduction in the shear modulus. At temperatures
below Tm, dmax increases with increasing temperature as more and more dislocation pairs
are thermally excited, the rate of increase being strongly influenced by the fact that the
free energy of a dislocation pair with separationd is determined by a value of the effective
shear modulus that is influenced (reduced) by the thermally excited pairs with separations
less thand. This effect is similar to the reduction of the superfluid density by bound pairs
of vortices (Ambegaokaret al 1980). The increase in density of dislocation pairs with
temperature belowTm causesµ0 to fall increasingly belowµ∞. At temperatures aboveTm
the density of dislocation pairs decreases, as they dissociate into free dislocations, soµ0

returns gradually to the valueµ∞. Above Tm the value ofdmax must be a little smaller
than the spacing between the free vortices, so it must then be related to the density of free
dislocations by the equation

dmax= gn−1/2
f (4.45)

where the numberg is a little less than unity. With increasing temperature within the hexatic
phase,nf must increase (see section 6.1), sodmax must fall.

The details underlying this picture are complicated and must be elucidated with the help
of renormalization group theory, but for frequencies either much smaller than, or much larger
than,ωP = 1/τP (dmax) the effect of the bound dislocation pairs can be incorporated into
our theory simply by using the moduliµ = µ0 or µ = µ∞, respectively. If the frequency is
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comparable withωP one must use a frequency-dependent complex shear modulusµ(ω), the
imaginary part of which determines the energy dissipation. This dissipation is a maximum
when ω ∼ ωP . But, if the shear modulus is frequency dependent, then the system of
differential equations on which our analysis has been based becomes invalid and must be
revised. Therefore our approach gives a reliable account of the crossover between viscous
and elastic behaviour (sections 4.3 and 4.4) only if the frequencyωs at which it occurs is
either much larger than or much smaller thanωP .

We show later that in the case of the ion system the values ofµ0 andµ∞ differ by less
than 40%; in calculating an approximately correct value ofωs we shall use a shear modulus
equal toµ0. Then puttingωs = µ0/η, and using equations (4.21), (4.39), (4.44) and (4.45),
we find that

ωs

ωP
= g2µ0a

2
0

7kBT
. (4.46)

At temperatures above, but close toTm, where the number of free dislocations is small, we
can use the critical value ofµ0, which is connected withTm by a relation similar to that for
the critical superfluid density in the Kosterlitz–Thouless theory (see Nelson and Halperin
1979):

µ0a
2
0

kBTm
= 4π (4.47)

and hence

ωs

ωP
= 4πg2

7
. (4.48)

This analysis is based on the assumption that there is a single relaxation time equal to
τP (dmax). In reality there are a range of such times, corresponding to a range of values
of d. According to Dahm and co-workers (Dahmet al 1989, Dahm 1997), the effect is
to place the maximum dissipation at a frequency equal to approximately 25ωP , so ratio
(4.48) ought to be reduced by a factor of 25. This means thatωs can be expected to be
considerably less thanωP , so the effects of relaxation of the dislocation pairs ought indeed
to be distinguishable from those of the viscoelastic crossover.

5. The effect of a magnetic field and a finite particle mobility

In the phenomenological hydrodynamic equation (3.2) we included the effect of a steady
magnetic field applied normal to the sheet of particles and of a finite particle mobility. We
ignored these effects in our subsequent discussion, although in many experiments they are
actually present. In this section, by way of illustration, we consider their effect on the
propagation of transverse waves in the low-frequency limit.

We take the space and time dependence to be of the form exp(iqx − iωt). We decompose
the velocityv into longitudinal and transverse componentsv` and vt . Equations (3.1) to
(3.2) can then be written, after elimination ofρ and2, as[

ω2− c2
`q

2+ iω

τ
+ iω

ρ0
(η + ζ )q2

]
v` − iωωcvt = 0 (5.1)[

ω2+ iω

τ
+ iωηq2

ρ0

]
vt + iωωcv` + iωq4KA

4ρ0(−iω + κq2)
vt = 0. (5.2)

We shall assume that the frequency of the transverse modes of interest to us is much less
than c`q, which accords with practical situations discussed in section 6. Then to a good
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approximation (5.1) reduces to

v` = − iωωc
c2
`q

2
vt (5.3)

and we find from (5.2) after some manipulation the dispersion relation

ω2+ iω

(
κq2+ γ ηq

2

ρ0
+ γ
τ

)
− γ ηκq

4

ρ0
− γKAq

4

4ρ0
= 0 (5.4)

whereγ = c2
`q

2/(c2
`q

2+ ω2
c ). It follows that

ω = − iq2

2

γ η
ρ0
+ κ + γ

q2τ
±
{(
κ + γ η

ρ0
+ γ

q2τ

)2

− 4γ ηκ

ρ0
− γKA

ρ0

}1/2
 (5.5)

which is the required generalization of (3.5). We see that the effect of the magnetic field
represented by the factorγ is different forκ and for the other hydrodynamic coefficients.
This demonstrates an unsatisfactory feature of a suggestion by Stoofet al (1996) that the
dissipation term proportional toκ can be eliminated by appropriately redefiningKA andη.
Although this elimination is formally possible, it makes the theory less transparent, since
the dissipation in equation (3.3) for the hexatic angle has a clear physical significance.

In practiceγ is of the order of or less than unity, and we see that the magnetic field
does not then have any major qualitative effect.

6. Application to the Coulomb system

In this last section we shall apply our results explicitly to a Coulomb system as exemplified
by the ion system described in section 1.

We first explain that the interaction of the ions in this system with the superfluid helium
in which they are trapped has only two effects that are relevant to our present discussion
(Barenghiet al 1991): it serves to increase the effective mass of each ion; and it introduces
some drag on the horizontal motion of the ions, due to the scattering of the excitations in the
liquid, including the ripplons on its surface. The theory summarized in earlier sections of
this paper ought therefore to describe the behaviour of any hexatic phase of the ion system.

For a typical sheet of positive ions (each with effective mass,m∗, equal to 2.15×
10−25 kg) the ion number density,n0, is 2.77× 1011 m−2, so ρ0 = 5.96× 10−14 kg m−2.
The predicted melting temperatureTm is 120 mK. The speed of the longitudinal mode (in
zero magnetic field) is given by (Barenghiet al 1991)

c2
` =

n0e
2d

2ε0m∗
(6.1)

where the sheet is held midway between two electrodes separated by distance 2d, and we
have assumed thatqd � 1. In the absence of renormalization due to dislocation pairs, the
shear modulus in the crystal phase is given by

µ = µ∞ = A(T )e2n
3/2
0

4πε0
(6.2)

whereA(0) = 0.245 (Bonsall and Maradudin 1977). Phonon–phonon interactions cause
A(T ) to fall with increasing temperature, and we shall take it to be equal to 0.18 nearTm
(Morf 1979, Devilleet al 1984). As explained in section 4.6, the presence of dislocation
pairs will further reduce the shear modulus at low frequencies, the value ofµ0 at the
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melting temperatureTm being given by (4.47). For the typical ion sheet, we find:µ∞(0) =
8.22× 10−12 N m−1; µ∞(Tm) = 6.03× 10−12 N m−1; andµ0(Tm) = 4.34× 10−12 N m−1.

The attack frequencyω0 is probably equal to roughly the plasma mode frequency (or the
shear mode frequency) in the crystal phase at the Brillouin zone boundary, and is therefore
given roughly by

ω2
0 =

n0e
2

ε0m∗a0
(6.3)

wheren0 anda0 are related, for a triangular lattice, byn0 = 4/3a2
0.

It is convenient to introduce the plasma parameter

0 = n
1/2
0 e2

4π1/2ε0kBT
(6.4)

which takes the value 130 atT = Tm. The kinematic viscosity is then predicted to be given
by

ν = e

16(πε0m∗)1/20
n0

nf
n
−1/4
0 exp

(
W

kBT

)
(6.5)

where we have now used the approximate relationshipn0 = a−2
0 .

The parametersκ andKA are given by

κ = en
−1/4
0

ε
1/2
0 m∗1/2

exp

(
− W

kBT

)
(6.6)

and

KA = kBT n0

nf
. (6.7)

In order to proceed further we need to have information about the concentrationnf of free
dislocations and the activation energyW .

6.1. The concentration of free dislocations and the activation energyW

As we have seen, there is no long-range translational order in the hexatic phase, owing
to the presence of free dislocations. The translational order falls off as exp(−r/ξ+(T ))
(Nelson and Halperin 1979). The correlation lengthξ+(T ) is related to the concentration
of free dislocations through the equationnf ≈ ξ−2

+ . For temperatures just aboveTm, to
which we shall confine our attention,ξ+(T ) is expected to depend on reduced temperature
t = (T − Tm)/Tm according to the equation

ξ+(T ) = ξ0 exp(bt−0.37) (6.8)

whereξ0 andb are constants. The lengthξ0 is presumably of ordera0, and we shall take
these quantities to be equal. The factorb is determined by the ratioEc/kBTm, whereEc
is the energy of the core of a dislocation (see, e.g., Dahm 1984). The value ofEc for a
Coulomb crystal at zero temperature has been calculated by Fisheret al (1979). For our
typical sheet of ions, for whichTm = 161 mK, the calculation leads toEc/kB = 1.3 K. Ec
must almost certainly decrease with increasing temperature. However, the precise way in
which it does so seems not to be known. This leads to serious uncertainty in the value of
b and to serious and very large uncertainty in the values ofξ+(T ) and nf . Morf (1979)
has suggested thatEc has fallen atTm by a factor equal toµ∞(Tm)/µ∞(0). This would
lead to a value ofb equal to about 4, which would lead in turn to values ofξ+(T ) that
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are larger than the size of a typical ion sheet on which experiments can be carried out over
an appreciable temperature range aboveTm. (At temperatures whereξ+(T ) is less than the
size of the sheet,t is then too large for (6.8) to be valid. Indeed the idea of a Kosterlitz–
Thouless transition may then become problematical.) Whether this is really the case is
not known, and further experiments are clearly required. For the purposes of illustration
we shall assume, not perhaps unreasonably, thatEc has been reduced by a factor equal to
µ0(Tm)/µ∞(0), which is 0.53. In that case,Ec/kB = 0.69 K at T = Tm, which leads to a
value ofb that is close to unity and to much smaller values ofξ+(T ), the value ofξ+(T )
not exceeding the size of the ion sheet unlesst < 1.6× 10−3. Therefore we take

nf

n0
= exp(−2t−0.37). (6.9)

This relationship holds only ift is sufficiently small: according to Dahm (1984) this means
t < 0.03.

We know of no calculations of the activation energyW . It must presumably be
significantly less thanEc (Dahm et al 1989), and for the purposes of illustration we shall
take it to be 200 mK.

6.2. Predictions for a hexatic phase of the ion sheets

We can now calculate numerical values for the parametersν = η/ρ0, ζ,KA, κ andωs for
the ionic hexatic phase. We choose as an example our typical positive-ion sheet at the
reduced temperaturet = 10−2. We find

nf

n0
= 1.69× 10−5 (6.10)

ν = 1.36× 10−2 m2 s−1 (6.11)
ζ

ρ0
= κ = 3.02× 10−5 m2 s−1 (6.12)

KA

ρ0
= 1.64× 10−6 m4 s−1 (6.13)

ωs = 7.44× 103 s−1. (6.14)

We see thatκ � ν andKA/ρ0� ν2. Under these conditions the two frequencies given
by (3.5) reduce to

ωt1 = −1

2
iq2ν (6.15)

and

ωt2 = −2iq2κ. (6.16)

In practical experiments one might consider trying to observe the modes (6.15) and
(6.16), to obtain values ofν andκ as functions of temperature, and to observe the viscoelastic
crossover frequencyωs . In practice the wavenumberq might be determined by the size of
a typical ion sheet and might therefore be equal to, say, 103 m−1. At any finite temperature
the ions have a finite mobility, determined at the relevant temperatures by ripplon scattering.
The corresponding relaxation timeτ depends on trapping depth but is typically about
6×10−3 s at a temperature near the melting temperature (120 mK) of our typical sheet. The
effect of this finite mobility can be seen from (5.5). In order that a mode frequency be not
totally dominated by the finite mobility we requireωtτ > 1. We see that the practicability
of experiments can be judged by looking at the values of four characteristic frequencies:
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ω1 = νq2/2; ω2 = 2κq2; ωs ; and 1/τ . The values of these frequencies (for the case where
q = 103 m−1) are plotted over the reduced temperature range up to 3× 10−2 in figure 1.
We see that observation of both the mode (6.15) and the crossover frequencyωs ought to
be possible, although observation of the mode (6.16) is probably not possible. However,
we emphasize that these tentative conclusions are based on a very uncertain estimate of the
parameterb that determines the concentration of dislocations in the hexatic phase. Further
experimental and theoretical work is clearly required.

The way in which shear modes can be excited and detected in the ion sheets has been
described by Elliottet al (1996), who were able to verify that lightly damped shear modes,
with a shear modulus given by (6.2), are indeed present in the crystal phase. Experiments
are now in progress to detect the mode (6.15) and hence to determine values of both the
kinematic viscosity at temperatures aboveTm and the crossover frequency.
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Appendix A

We comment on the form of the hydrodynamical equations (3.2) and (3.3)
Suppose first that we are dealing with a solid, and that the increase in free energy due

to bending of the interparticle bonds is given by equation (2.2). Let the bending be due to
a particle displacement fieldδu. We derive the resulting force acting on unit volume of the
solid, as follows. The change in the angle2 is related in an obvious way to the curl of this
field; i.e.

δ2 = 1

2
εik
∂δuk

∂xi
(A.1)

and therefore the corresponding change in the free energyFH is given by

δFH = 1

2
KA

∫
∂2

∂xj

∂

∂xj

(
εik
∂δuk

∂xi

)
d2r = 1

2
KA

∫
εik

∂32

∂xi ∂x
2
j

δuk d2r (A.2)

where we have made use of elementary vector transformations and neglected the effect of
any forces at the edge of the hexatic. We can rewrite (A.2) in the form

δFH = −
∫
∂σkj

∂xj
δuk d2r (A.3)

where the stress tensor,σjk, is given by

σkj = 1

2
KAεki

∂22

∂xi ∂xj
. (A.4)

It follows that the force per unit area acting on the hexatic must be given by

fk = −∂σkj
∂xj

(A.5)

which is equivalent to a force per unit mass equal to the last term in equation (3.4). However,
in order to satisfy conservation of angular momentum, the stress tensor (A.4) ought to be
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symmetric (Landau and Lifshitz 1970), and this can be achieved without alteringfk by
adding a second term, so

σkj = 1

2
KA

(
εki

∂22

∂xi ∂xj
+ εji ∂22

∂xi ∂xk

)
. (A.6)

This is the form of the stress tensor used by Zippeliuset al (1980).
In the solid, changes in the angle2 are directly related to the rotation of the solid

through equation (A.1) from which it follows that

∂2

∂t
= 1

2
ẑ · curlv. (A.7)

This relationship does not hold in the hexatic phase, as we see from our analysis of the
free-dislocation model in section 4. The angle2 is then connected to the independent
degree of freedom associated with the hexatic order parameter, and we can think of rotation
of the hexatic degree of freedom as giving rise to a frictional couple per unit volume equal
to

G

(
∂2

∂t
− 1

2
ẑ · curlv

)
acting on the centre-of-mass motion of the system, whereG is a constant. The equation of
motion then becomes

∂v

∂t
+ v
τ
= − c

2

ρ0
∇ρ + ωcv × ẑ + η

ρ0
∇2v + ζ

ρ0
grad divv

+ 1

2
Gẑ ×∇

(
∂2

∂t
− 1

2
ẑ · curlv

)
. (A.8)

We can also think of the couple

−G
(
∂2

∂t
− 1

2
ẑ · curlv

)
as being balanced by a torque−δFH/δ2 due to the hexatic energy (2.2), and hence

G

(
∂2

∂t
− 1

2
ẑ · curlv

)
= KA ∇22. (A.9)

Equations (A.8) and (A.9) are identical to (3.2) and (3.3) ifκ = KA/G.
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